Part Number Hot Search : 
00BZXC HDSPA90X 1000B 5KP24A 2B356 VCH162 PUMH1 9KXXX
Product Description
Full Text Search
 

To Download 8432BYI-51LF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  700mhz, cyrstal-to-3.3v differential lvpecl frequency synthesizer ics8432i-51 idt ? / ics ? 3.3v lvpecl frequency synthesizer 1 ics8432byi-51 rev. b may 13, 2008 g eneral d escription the ics8432i-51 is a general purpose, dual out- put crystal-to-3.3v differential lvpecl high fre- quency synthesizer and a member of the hipercloc ks? f amily of high performance clock solutions from idt. the ics8432i-51 has a select- able ref_clk or crystal input. the vco operates at a fre- quency range of 250mhz to 700mhz. the vco frequency is programmed in steps equal to the value of the input reference or crystal frequency. the vco and output frequency can be programmed using the serial or parallel interface to the con- figuration logic. the low phase noise characteristics of the ics8432i-51 make it an ideal clock source for gigabit ethernet, fibre channel 1 and 2, and infiniband applications. b lock d iagram p in a ssignment f eatures ? dual differential 3.3v lvpecl outputs ? selectable crystal oscillator interface or lvcmos/lvttl ref_clk ? output frequency range: 31.25mhz to 700mhz ? crystal input frequency range: 12mhz to 25mhz ? vco range: 250mhz to 700mhz ? parallel or serial interface for programming counter and output dividers ? rms period jitter: 3.5ps (maximum) ? cycle-to-cycle jitter: 40ps (maximum) ? 3.3v supply voltage ? -40c to 85c ambient operating temperature ? available in both standard (rohs 5) and lead-free (rohs 6) packages hiperclocks? ic s osc vco_sel xtal_sel ref_clk xtal1 xtal2 s_load s_data s_clock np_load m0:m8 n0:n1 vco pll fout0 nfout0 fout1 nfout1 test configuration interface logic m 0 1 0 1 phase detector 1 2 4 8 mr 32 31 30 29 28 27 26 25 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 24 23 22 21 20 19 18 17 xtal_out ref_clk xtal_sel v cca s_load s_data s_clock mr m5 m6 m7 m8 n0 n1 nc v ee v ee nfout0 fout0 v cco nfout1 fout1 v cc test xtal_in np_load vco_sel m0 m1 m2 m3 m4 32-lead lqfp 7mm x 7mm x 1.4mm package body y package top view ics8432i-51 32-lead vfqfn 5mm x 5mm x 0.925mm package body k package top view
idt ? / ics ? 3.3v lvpecl frequency synthesizer 2 ics8432byi-51 rev. b may 13, 2008 ics8432i-51 700mhz, crystal-to-3.3v differential lvpecl frequency synthesizer n output divider to a specific default state that will automatically occur during power-up. the test output is low when operating in the parallel input mode. the relationship between the vco frequency, the crystal frequency and the m divider is defined as follows: the m value and the required values of m0 through m8 are shown in table 3b, programmable vco frequency function table. valid m values for which the pll will achieve lock for a 25mhz reference are defined as 10 m 28. the frequency out is de- fined as follows: serial operation occurs when np_load is high and s_load is low. the shift register is loaded by sampling the s_data bits with the rising edge of s_clock. the contents of the shift reg-ister are loaded into the m divider and n output divider when s_load transitions from low-to-high. the m divide and n output divide values are latched on the high-to-low transition of s_load. if s_load is held high, data at the s_data input is passed directly to the m divider and n output divider on each ris-ing edge of s_clock. the serial mode can be used to program the m and n bits and test bits t1 and t0. the internal registers t0 and t1 deter- mine the state of the test output as follows: f unctional d escription note: the functional description that follows describes opera- tion using a 25mhz crystal. valid pll loop divider values for dif- ferent crystal or input frequencies are defined in the input frequency characteristics, table 5, note 1. the ics8432i-51 features a fully integrated pll and therefore, requires no external components for setting the loop bandwidth. a fundamental crystal is used as the input to the on-chip oscilla- tor. the output of the oscillator is fed into the phase detector. a 25mhz crystal provides a 25mhz phase detector reference frequency. the vco of the pll operates over a range of 250mhz to 700mhz. the output of the m divider is also applied to the phase detector. the phase detector and the m divider force the vco output fre- quency to be m times the reference frequency by adjusting the vco control voltage. note that for some values of m (either too high or too low), the pll will not achieve lock. the output of the vco is scaled by a divider prior to being sent to each of the lvpecl output buffers. the divider provides a 50% output duty cycle. the programmable features of the ics8432i-51 support two in- put modes to program the m divider and n output divider. the two input operational modes are parallel and serial. figure 1 shows the timing diagram for each mode. in parallel mode, the np_load input is initially low. the data on inputs m0 through m8 and n0 and n1 is passed directly to the m divider and n output divider. on the low-to-high transition of the np_load input, the data is latched and the m divider remains loaded until the next low transition on np_load or until a serial event occurs. as a result, the m and n bits can be hardwired to set the m divider and fvco = fxtal x m t1 t0 test output 00 low 0 1 s_data, shift register input 1 0 output of m divider 1 1 cmos fout f igure 1. p arallel & s erial l oad o perations *note: the null timing slot must be observed. time s erial l oading p arallel l oading t s t h t s t h t s m, n t1 t0 * null n1 n0 m8 m7 m6 m5 m4 m3 m2 m1 m 0 fout = fvco = fxtal x m n n s_clock s_data s_load np_load m0:m8, n0:n1 np_load s_load
idt ? / ics ? 3.3v lvpecl frequency synthesizer 3 ics8432byi-51 rev. b may 13, 2008 ics8432i-51 700mhz, crystal-to-3.3v differential lvpecl frequency synthesizer t able 1. p in d escriptions r e b m u ne m a ne p y tn o i t p i r c s e d 15 mt u p n ip u l l u p n o i t i s n a r t h g i h - o t - w o l n o d e h c t a l a t a d . s t u p n i r e d i v i d m . s l e v e l e c a f r e t n i l t t v l / s o m c v l . t u p n i d a o l _ p n f o , 4 , 3 , 2 , 9 2 , 8 2 2 3 , 1 3 , 0 3 , 8 m , 7 m , 6 m , 1 m , 0 m 4 m , 3 m , 2 m t u p n in w o d l l u p 6 , 51 n , 0 nt u p n in w o d l l u p , c 3 e l b a t n i d e n i f e d s a e u l a v r e d i v i d t u p t u o s e n i m r e t e d . s l e v e l e c a f r e t n i l t t v l / s o m c v l . e l b a t n o i t c n u f 7c nd e s u n u. t c e n n o c o n 6 1 , 8v e e r e w o p. s n i p y l p p u s e v i t a g e n 9t s e tt u p t u o t u p t u o . n o i t a r e p o f o e d o m l a i r e s e h t n i e v i t c a s i h c i h w t u p t u o t s e t . s l e v e l e c a f r e t n i l t t v l / s o m c v l . e d o m l e l l a r a p n i w o l n e v i r d 0 1v c c r e w o p. n i p y l p p u s e r o c 2 1 , 1 11 t u o f n , 1 t u o ft u p t u o . s l e v e l e c a f r e t n i l c e p v l v 3 . 3 . r e z i s e h t n y s e h t r o f t u p t u o l a i t n e r e f f i d 3 1v o c c r e w o p. n i p y l p p u s t u p t u o 5 1 , 4 10 t u o f n , 0 t u o ft u p t u o . s l e v e l e c a f r e t n i l c e p v l v 3 . 3 . r e z i s e h t n y s e h t r o f t u p t u o l a i t n e r e f f i d 7 1r mt u p n in w o d l l u p s r e d i v i d l a n r e t n i e h t , h g i h c i g o l n e h w . t e s e r r e t s a m h g i h e v i t c a e h t d n a w o l o g o t x t u o f s t u p t u o e u r t e h t g n i s u a c t e s e r e r a l a n r e t n i e h t , w o l c i g o l n e h w . h g i h o g o t x t u o f n s t u p t u o d e t r e v n i t o n s e o d r m f o n o i t r e s s a . d e l b a n e e r a s t u p t u o e h t d n a s r e d i v i d . s l e v e l e c a f r e t n i l t t v l / s o m c v l . s e u l a v t d n a , n , m d e d a o l t c e f f e 8 1k c o l c _ st u p n in w o d l l u p r e t s i g e r t f i h s e h t o t n i t u p n i a t a d _ s t a t n e s e r p a t a d l a i r e s n i s k c o l c . s l e v e l e c a f r e t n i l t t v l / s o m c v l . k c o l c _ s f o e g d e g n i s i r e h t n o 9 1a t a d _ st u p n in w o d l l u p f o e g d e g n i s i r e h t n o d e l p m a s a t a d . t u p n i l a i r e s r e t s i g e r t f i h s . s l e v e l e c a f r e t n i l t t v l / s o m c v l . k c o l c _ s 0 2d a o l _ st u p n in w o d l l u p . s r e d i v i d e h t o t n i r e t s i g e r t f i h s m o r f a t a d f o n o i t i s n a r t s l o r t n o c . s l e v e l e c a f r e t n i l t t v l / s o m c v l 1 2v a c c r e w o p. n i p y l p p u s g o l a n a 2 2l e s _ l a t xt u p n ip u l l u p . e c r u o s e c n e r e f e r l l p e h t s a s t u p n i t s e t r o l a t s y r c n e e w t e b s t c e l e s . w o l n e h w k l c _ f e r s t c e l e s . h g i h n e h w s t u p n i l a t x s t c e l e s . s l e v e l e c a f r e t n i l t t v l / s o m c v l 3 2k l c _ f e rt u p n in w o d l l u p. s l e v e l e c a f r e t n i l t t v l / s o m c v l . t u p n i k c o l c e c n e r e f e r , 4 2 5 2 , t u o _ l a t x n i _ l a t x t u p n i . t u p n i e h t s i n i _ l a t x . e c a f r e t n i r o t a l l i c s o l a t s y r c . t u p t u o e h t s i t u o _ l a t x 6 2d a o l _ p nt u p n in w o d l l u p s i 0 m : 8 m t a t n e s e r p a t a d n e h w s e n i m r e t e d . t u p n i d a o l l e l l a r a p e h t s t e s 0 n : 1 n t a t n e s e r p a t a d n e h w d n a , r e d i v i d m o t n i d e d a o l . s l e v e l e c a f r e t n i l t t v l / s o m c v l . e u l a v r e d i v i d t u p t u o n 7 2l e s _ o c vt u p n ip u l l u p . e d o m s s a p y b r o l l p n i s i r e z i s e h t n y s r e h t e h w s e n i m r e t e d . s l e v e l e c a f r e t n i l t t v l / s o m c v l : e t o n p u l l u p d n a n w o d l l u p . s e u l a v l a c i p y t r o f , s c i t s i r e t c a r a h c n i p , 2 e l b a t e e s . s r o t s i s e r t u p n i l a n r e t n i o t r e f e r t able 2. p in c haracteristics l o b m y sr e t e m a r a ps n o i t i d n o c t s e tm u m i n i ml a c i p y tm u m i x a ms t i n u c n i e c n a t i c a p a c t u p n i 4f p r p u l l u p r o t s i s e r p u l l u p t u p n i 1 5k r n w o d l l u p r o t s i s e r n w o d l l u p t u p n i 1 5k
idt ? / ics ? 3.3v lvpecl frequency synthesizer 4 ics8432byi-51 rev. b may 13, 2008 ics8432i-51 700mhz, crystal-to-3.3v differential lvpecl frequency synthesizer t able 3a. p arallel and s erial m ode f unction t able s t u p n i s n o i t i d n o c r md a o l _ p nmnd a o l _ sk c o l c _ sa t a d _ s hx xxx x x . w o l s t u p t u o s e c r o f . t e s e r ll a t a da t a dx x x m e h t o t y l t c e r i d d e s s a p s t u p n i n d n a m n o a t a d . w o l d e c r o f t u p t u o t s e t . r e d i v i d t u p t u o n d n a r e d i v i d l a t a da t a dl x x d e d a o l s n i a m e r d n a s r e t s i g e r t u p n i o t n i d e h c t a l s i a t a d . s r u c c o t n e v e l a i r e s a l i t n u r o n o i t i s n a r t w o l t x e n l i t n u lh xxl a t a d n o a t a d h t i w d e d a o l s i r e t s i g e r t f i h s . e d o m t u p n i l a i r e s . k c o l c _ s f o e g d e g n i s i r h c a e n o a t a d _ s lh xx la t a d e h t o t d e s s a p e r a r e t s i g e r t f i h s e h t f o s t n e t n o c . r e d i v i d t u p t u o n d n a r e d i v i d m lh xx la t a d. d e h c t a l e r a s e u l a v r e d i v i d t u p t u o n d n a r e d i v i d m lh xxl x x . s r e t s i g e r t f i h s t c e f f a t o n o d t u p n i l a i r e s r o l e l l a r a p lh xxh a t a d. d e k c o l c s i t i s a r e d i v i d m o t y l t c e r i d d e s s a p a t a d _ s w o l = l : e t o n h g i h = h e r a c t ' n o d = x n o i t i s n a r t e g d e g n i s i r = n o i t i s n a r t e g d e g n i l l a f = t able 3b. p rogrammable vco f requency f unction t able t able 3c. p rogrammable o utput d ivider f unction t able s t u p n i e u l a v r e d i v i d n ) z h m ( y c n e u q e r f t u p t u o 1 n0 nm u m i n i mm u m i x a m 0010 5 20 0 7 0125 2 10 5 3 104 5 . 2 65 7 1 118 5 2 . 1 35 . 7 8 y c n e u q e r f o c v ) z h m ( e d i v i d m 6 5 28 2 14 62 36 18421 8 m7 m6 m5 m4 m3 m2 m1 m0 m 0 5 20 1 0 0 0 0 0 10 10 5 7 21 1 00000 10 11 ? ? ????????? ? ? ????????? 0 5 66 2 0 0 0 0 1 10 10 5 7 67 2 0000 110 11 0 0 78 2 0000 11100 y c n e u q e r f t u p n i k l c _ t s e t r o l a t s y r c o t d n o p s e r r o c s e i c n e u q e r f g n i t l u s e r e h t d n a s e u l a v e d i v i d m e s e h t : 1 e t o n . z h m 5 2 f o
idt ? / ics ? 3.3v lvpecl frequency synthesizer 5 ics8432byi-51 rev. b may 13, 2008 ics8432i-51 700mhz, crystal-to-3.3v differential lvpecl frequency synthesizer t able 4a. p ower s upply dc c haracteristics , v cc = v cco = 3.3v5%, v ee = 0v, t a = -40c to 85c t able 4b. lvcmos / lvttl dc c haracteristics , v cc = v cco = 3.3v5%, v ee = 0v, t a = -40c to 85c l o b m y sr e t e m a r a ps n o i t i d n o c t s e tm u m i n i ml a c i p y tm u m i x a ms t i n u v h i t u p n i e g a t l o v h g i h , r m , l e s _ l a t x , l e s _ o c v , 1 n : 0 n , d a o l _ p n , d a o l _ s 8 m : 0 m , k c o l c _ s , a t a d _ s 2v c c 3 . 0 +v k l c _ f e r2v c c 3 . 0 +v v l i t u p n i e g a t l o v w o l , r m , l e s _ l a t x , l e s _ o c v , 1 n : 0 n , d a o l _ p n , d a o l _ s 8 m : 0 m , k c o l c _ s , a t a d _ s 3 . 0 -8 . 0v k l c _ f e r3 . 0 -3 . 1v i h i t u p n i t n e r r u c h g i h , r m , 1 n , 0 n , 8 m - 6 m , 4 m - 0 m , k l c _ f e r , k c o l c _ s d a o l _ p n , d a o l _ s , a t a d _ s v c c v = n i v 5 6 4 . 3 =0 5 1a l e s _ o c v , l e s _ l a t x , 5 mv c c v = n i v 5 6 4 . 3 =5a i l i t u p n i t n e r r u c w o l , r m , 1 n , 0 n , 8 m - 6 m , 4 m - 0 m , k l c _ f e r , k c o l c _ s d a o l _ p n , d a o l _ s , a t a d _ s v c c , v 5 6 4 . 3 = v n i v 0 = 5 -a l e s _ o c v , l e s _ l a t x , 5 m v c c , v 5 6 4 . 3 = v n i v 0 = 0 5 1 -a v h o t u p t u o e g a t l o v h g i h 1 e t o n ; t s e t6 . 2v v l o t u p t u o e g a t l o v w o l 1 e t o n ; t s e t 5 . 0v note 1: outputs terminated with 50 to v cco /2. l o b m y sr e t e m a r a ps n o i t i d n o c t s e tm u m i n i ml a c i p y tm u m i x a ms t i n u v c c e g a t l o v y l p p u s e r o c 5 3 1 . 33 . 35 6 4 . 3v v a c c e g a t l o v y l p p u s g o l a n av c c ?5 1 . 03 . 35 6 4 . 3v v o c c e g a t l o v y l p p u s t u p t u o 5 3 1 . 33 . 35 6 4 . 3v i e e t n e r r u c y l p p u s r e w o p 5 4 1a m i a c c t n e r r u c y l p p u s g o l a n a 5 1a m a bsolute m aximum r atings supply voltage, v cc 4.6v inputs, v i -0.5v to v cc + 0.5 v outputs, i o contin uous current 50ma surge current 100ma package thermal impedance, ja 32 lead lqfp 47.9c/w (0 lfpm) 32 lead vfqfn 41.07c/w (0 lfpm) storage temperature, t stg -65c to 150c note: stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. these ratings are stress specifications only. functional op- eration of product at these conditions or any conditions beyond those listed in the dc characteristics or ac characteristics is not implied. exposure to absolute maximum rating conditions for ex- tended periods may affect product reliability.
idt ? / ics ? 3.3v lvpecl frequency synthesizer 6 ics8432byi-51 rev. b may 13, 2008 ics8432i-51 700mhz, crystal-to-3.3v differential lvpecl frequency synthesizer t able 4c. lvpecl dc c haracteristics , v cc = v cco = 3.3v5%, v ee = 0v, t a = -40c to 85c l o b m y sr e t e m a r a ps n o i t i d n o c t s e tm u m i n i ml a c i p y tm u m i x a ms t i n u v h o 1 e t o n ; e g a t l o v h g i h t u p t u ov o c c 4 . 1 -v o c c 9 . 0 -v v l o 1 e t o n ; e g a t l o v w o l t u p t u ov o c c 0 . 2 -v o c c 7 . 1 -v v g n i w s g n i w s e g a t l o v t u p t u o k a e p - o t - k a e p 6 . 00 . 1v 0 5 h t i w d e t a n i m r e t s t u p t u o : 1 e t o n v o t o c c , n o i t c e s " n o i t a m r o f n i t n e m e r u s a e m r e t e m a r a p " e e s . v 2 - . " t i u c r i c t s e t d a o l t u p t u o v 3 . 3 " e r u g i f t able 5. i nput f requency c haracteristics , v cc = v cco = 3.3v5%, v ee = 0v, t a = -40c to 85c l o b m y sr e t e m a r a ps n o i t i d n o c t s e tm u m i n i ml a c i p y tm u m i x a ms t i n u f n i y c n e u q e r f t u p n i 1 e t o n ; k l c _ f e r2 15 2z h m ; t u o _ l a t x , n i _ l a t x 1 e t o n 2 15 2z h m k c o l c _ s 0 5z h m e h t n i h t i w e t a r e p o o t o c v e h t r o f t e s e b t s u m e u l a v m e h t , e g n a r y c n e u q e r f k l c _ f e r d n a l a t s y r c t u p n i e h t r o f : 1 e t o n 1 2 e r a m f o s e u l a v d i l a v , z h m 2 1 f o y c n e u q e r f t u p n i m u m i n i m e h t g n i s u . e g n a r z h m 0 0 7 o t z h m 0 5 2 m e h t g n i s u . 8 5 0 1 e r a m f o s e u l a v d i l a v , z h m 5 2 f o y c n e u q e r f m u m i x a m m . 8 2 t able 6. c rystal c haracteristics l o b m y sr e t e m a r a ps n o i t i d n o c t s e tm u m i n i ml a c i p y tm u m i x a ms t i n u f t u o y c n e u q e r f t u p t u o5 2 . 1 30 0 7z h m t ) c c ( t i j3 , 1 e t o n ; r e t t i j e l c y c - o t - e l c y cz h m 0 5 3 > o c v f0 4s p t ) r e p ( t i j1 e t o n ; s m r , r e t t i j d o i r e p 5 . 3s p t ) o ( k s3 , 2 e t o n ; w e k s t u p t u o 5 3s p t r t / f e m i t l l a f / e s i r t u p t u o% 0 8 o t % 0 20 0 20 0 7s p t s e m i t p u t e s d a o l _ p n o t n , m5s n k c o l c _ s o t a t a d _ s5s n d a o l _ s o t k c o l c _ s5s n t h e m i t d l o h d a o l _ p n o t n , m5s n k c o l c _ s o t a t a d _ s5s n d a o l _ s o t k c o l c _ s5s n c d oe l c y c y t u d t u p t u o1 > n8 42 5% t w p h t d i w e s l u p t u p t u o1 = nt pd o i r e 0 5 1 - 2 /t pd o i r e 0 5 1 + 2 /s p t k c o l e m i t k c o l l l p 1s m . n o i t c e s n o i t a m r o f n i t n e m e r u s a e m r e t e m a r a p e e s . s t u p n i l a t x g n i s u e c n a m r o f r e p r e t t i j : 1 e t o n . s n o i t i d n o c d a o l l a u q e h t i w d n a e g a t l o v y l p p u s e m a s e h t t a s t u p t u o n e e w t e b w e k s s a d e n i f e d : 2 e t o n . s t n i o p s s o r c l a i t n e r e f f i d t u p t u o e h t t a d e r u s a e m . 5 6 d r a d n a t s c e d e j h t i w e c n a d r o c c a n i d e n i f e d s i r e t e m a r a p s i h t : 3 e t o n t able 7. ac c haracteristics , v cc = v cco = 3.3v5%, v ee = 0v, t a = -40c to 85c r e t e m a r a ps n o i t i d n o c t s e tm u m i n i ml a c i p y tm u m i x a ms t i n u n o i t a l l i c s o f o e d o m l a t n e m a d n u f y c n e u q e r f 2 15 2z h m ) r s e ( e c n a t s i s e r s e i r e s t n e l a v i u q e 0 7 e c n a t i c a p a c t n u h s 7f p l e v e l e v i r d 1w m
idt ? / ics ? 3.3v lvpecl frequency synthesizer 7 ics8432byi-51 rev. b may 13, 2008 ics8432i-51 700mhz, crystal-to-3.3v differential lvpecl frequency synthesizer 3.3v o utput l oad ac t est c ircuit o utput s kew scope qx nqx lvpecl v ee 2v -1.3v 0.165v t sk(o) nfoutx foutx nfouty fouty c ycle - to -c ycle j itter p eriod j itter foutx ? ? ? ? t cycle n t cycle n+1 t jit(cc) = t cycle n ? t cycle n+1 1000 cycles t cycle n+1 v oh v ref v ol mean period (first edge after trigger) reference point (trigger edge) 1  contains 68.26% of all measurements 2  contains 95.4% of all measurements 3  contains 99.73% of all measurements 4  contains 99.99366% of all measurements 6  contains (100-1.973x10 -7 )% of all measurements histogram nfoutx foutx nfoutx o utput d uty c ycle /p ulse w idth /p eriod t pw t period t pw t period odc = x 100% o utput r ise /f all t ime v ee v cc , v cco v cca 2v p arameter m easurement i nformation 20% 80% 80% 20% t r t f v sw i n g foutx nfoutx
idt ? / ics ? 3.3v lvpecl frequency synthesizer 8 ics8432byi-51 rev. b may 13, 2008 ics8432i-51 700mhz, crystal-to-3.3v differential lvpecl frequency synthesizer table 8. common sans application frequencies table 9. configuration details for sans applications a pplication i nformation as in any high speed analog circuitry, the power supply pins are vulnerable to random noise. to achieve optimum jitter perfor- mance, power supply isolation is required. the ics8432i-51 pro- vides separate power supplies to isolate any high switching noise from the outputs to the internal pll. v cc , v cca and v cco should be individually connected to the power supply plane through vias, and 0.01f bypass capacitors should be used for each pin. figure 2 illustrates this for a generic v cc pin and also shows that v cca requires that an additional 10 resistor along with a 10f bypass capacitor be connected to the v cca pin. f igure 2. p ower s upply f iltering 10 v cca 10 f .01 f 3.3v .01 f v cc y g o l o n h c e t t c e n n o c r e t n ie t a r k c o l c s e d r e s o t y c n e u q e r f e c n e r e f e r ) z h m ( y c n e u q e r f l a t s y r c ) z h m ( t e n r e h t e t i b a g i gz h g 5 2 . 15 2 . 6 5 1 , 0 5 2 , 5 2 15 2 1 3 5 . 9 1 , 5 2 l e n n a h c e r b i f z h g 5 2 6 0 . 1 1 c f z h g 0 5 2 1 . 2 2 c f 5 2 1 8 . 2 3 1 , 5 2 1 . 3 5 , 5 2 . 6 0 15 2 , 5 2 6 5 1 0 6 . 6 1 d n a b i n i f n iz h g 5 . 20 5 2 , 5 2 15 2 p ower s upply f iltering t echniques s torage a rea n etworks a variety of technologies are used for interconnection of the elements within a san. the tables below lists the common frequencies used as well as the settings for the ics8432i-51 to generate the appropriate frequency. t c e n n o c r e t n i y g o l o n h c e t y c n e u q e r f l a t s y r c ) z h m ( 1 5 - i 2 3 4 8 s c i y c n e u q e r f t u p t u o s e d r e s o t ) z h m ( 1 5 - i 2 3 4 8 s c i s g n i t t e s n & m 8 m7 m6 m5 m4 m3 m2 m1 m0 m1 n0 n t e n r e h t e t i b a g i g 5 25 2 1 0000 10 100 10 5 20 5 2 0000 10 1000 1 5 25 2 . 6 5 1 0000 1100 110 5 2 1 3 5 . 9 15 2 . 6 5 1 000 100000 10 1 l e n n a h c r e b i f 5 25 2 1 . 3 5 0000 1000 111 5 25 2 . 6 0 1 0000 1000 110 2 l e n n a h c r e b i f5 2 6 5 1 0 6 . 6 15 2 1 8 . 2 3 1 000 100000 10 d n a b i n i f n i 5 25 2 1 0000 10 100 10 5 20 5 2 0000 10 1000 1
idt ? / ics ? 3.3v lvpecl frequency synthesizer 9 ics8432byi-51 rev. b may 13, 2008 ics8432i-51 700mhz, crystal-to-3.3v differential lvpecl frequency synthesizer f igure 3. c rystal i npu t i nterface c rystal i nput i nterface the ics8432i-51 has been characterized with 18pf parallel resonant crystals. the capacitor values, c1 and c2, shown in figure 3 below were determined using a 25mhz, 18pf parallel resonant crystal and were chosen to minimize the ppm error. the optimum c1 and c2 values can be slightly adjusted for different board layouts. lvcmos to xtal i nterface the xtal_in input can accept a single-ended lvcmos signal through an ac coupling capacitor. a general interface diagram is shown in figure 4. the xtal_out pin can be left floating. the input edge rate can be as slow as 10ns. for lvcmos inputs, it is recommended that the amplitude be reduced from full swing to half swing in order to prevent signal interference with the power rail and to reduce noise. this configuration requires that the output f igure 4. g eneral d iagram for lvcmos d river to xtal i nput i nterface impedance of the driver (ro) plus the series resistance (rs) equals the transmission line impedance. in addition, matched termination at the crystal input will attenuate the signal in half. this can be done in one of two ways. first, r1 and r2 in parallel should equal the transmission line impedance. for most 50 applications, r1 and r2 can be 100 . this can also be accomplished by removing r1 and making r2 50 . r2 zo = 50 vdd ro zo = ro + rs r1 vdd xta l _i n xta l _o u t .1uf rs c1 22p x1 18pf parallel crystal c2 22p xtal_out xtal_in
idt ? / ics ? 3.3v lvpecl frequency synthesizer 10 ics8432byi-51 rev. b may 13, 2008 ics8432i-51 700mhz, crystal-to-3.3v differential lvpecl frequency synthesizer v cc - 2v 50 50 rtt z o = 50 z o = 50 fout fin rtt = z o 1 ((v oh + v ol ) / (v cc ? 2)) ? 2 3.3v 125 125 84 84 z o = 50 z o = 50 fout fin the clock layout topology shown below is a typical termination for lvpecl outputs. the two different layouts mentioned are recommended only as guidelines. foutx and nfoutx are low impedance follower outputs that generate ecl/lvpecl compatible outputs. therefore, termi- nating resistors (dc current path to ground) or current sources must be used for functionality. these outputs are designed to f igure 5b. lvpecl o utput t ermination f igure 5a. lvpecl o utput t ermination drive 50 transmission lines. matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. figures 5a and 5b show two different layouts which are recommended only as guidelines. other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations. t ermination for lvpecl o utputs i nputs : c rystal i nputs for applications not requiring the use of the crystal oscillator input, both xtal_in and xtal_out can be left floating. though not required, but for additional protection, a 1k resistor can be tied from xtal_in to ground. ref_clk i nput for applications not requiring the use of the test clock, it can be left floating. though not required, but for additional protection, a 1k resistor can be tied from the ref_clk to ground. lvcmos c ontrol p ins all control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. a 1k resistor can be used. r ecommendations for u nused i nput and o utput p ins o utputs : lvpecl o utputs all unused lvpecl outputs can be left floating. we recommend that there is no trace attached. both sides of the differential output pair should either be left floating or terminated.
idt ? / ics ? 3.3v lvpecl frequency synthesizer 11 ics8432byi-51 rev. b may 13, 2008 ics8432i-51 700mhz, crystal-to-3.3v differential lvpecl frequency synthesizer f igure 6. p.c.a ssembly for e xposed p ad t hermal r elease p ath ?s ide v iew (d rawing not to s cale ) vfqfn epad t hermal r elease p at h in order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the printed circuit board (pcb) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in figure 6. the solderable area on the pcb, as defined by the solder mask, should be at least the same size/shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. sufficient clearance should be designed on the pcb between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts. while the land pattern on the pcb provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the pcb to the ground plane(s). the land pattern must be connected to ground through these vias. the vias act as ?heat pipes?. the number of vias (i.e. ?heat pipes?) are application specific and dependent upon the package power dissipation as well as electrical conductivity requirements. thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. it is recommended to use as many vias connected to ground as possible. it is also recommended that the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. this is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/ slug and the thermal land. precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. note: these recommendations are to be used as a guideline only. for further information, refer to the application note on the surface mount assembly of amkor?s thermally/ electrically enhance leadfame base pac kage, amkor technology. thermal via land pattern solder pin solder pin pad pin pad pin ground plane exposed heat slug (ground pad)
idt ? / ics ? 3.3v lvpecl frequency synthesizer 12 ics8432byi-51 rev. b may 13, 2008 ics8432i-51 700mhz, crystal-to-3.3v differential lvpecl frequency synthesizer f igure 7a. s chematic of r ecommended l ayo u t l ayout g uideline the schematic of the ics8432i-51 layout example used in this layout guideline is shown in figure 7a. the ics8432i-51 recommended pcb board layout for this example is shown in figure 7b. this layout example is used as a general guideline. the layout in the actual system will depend on the selected component types, the density of the components, the density of the traces, and the stack up of the p.c. board. s_data foutn vcca x1 r1 125 u1 8432-51 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 32 31 30 29 28 27 26 25 m5 m6 m7 m8 n0 n1 nc vee test vcc fout1 nfout1 vcco fout0 nfout0 vee mr s_clock s_data s_load vcca nxtal_sel ref_clk x_ou t m4 m3 m2 m1 m0 vco_sel np_load x_in c16 10u r3 125 xtal_sel r4 84 s_clock s_load fout c14 0.1u vcc=3.3v c15 0.1u + - c11 0.01u vcc r2 84 vcc ref_in vcc tl1 zo = 50 ohm c1 r7 10 tl2 zo = 50 ohm c2 ics8432i-51
idt ? / ics ? 3.3v lvpecl frequency synthesizer 13 ics8432byi-51 rev. b may 13, 2008 ics8432i-51 700mhz, crystal-to-3.3v differential lvpecl frequency synthesizer f igure 7b. pcb b oard l ayout for ics8432i-51 the following component footprints are used in this layout example: all the resistors and capacitors are size 0603. p ower and g rounding place the decoupling capacitors c14 and c15, as close as possible to the power pins. if space allows, placement of the decoupling capacitor on the component side is preferred. this can reduce unwanted inductance between the decoupling capacitor and the power pin caused by the via. maximize the power and ground pad sizes and number of vias capacitors. this can reduce the inductance between the power and ground planes and the component power and ground pins. the rc filter consisting of r7, c11, and c16 should be placed as close to the v cca pin as possible. c lock t races and t ermination poor signal integrity can degrade the system performance or cause system failure. in synchronous high-speed digital systems, the clock signal is less tolerant to poor signal integrity than other signals. any ringing on the rising or falling edge or excessive ring back can cause system failure. the shape of the trace and the trace delay might be restricted by the available space on the board and the component location. while routing the traces, the clock signal traces should be routed first and should be locked prior to routing other signal traces. ? the differential 50 output traces should have the same length. ? avoid sharp angles on the clock trace. sharp angle turns cause the characteristic impedance to change on the transmission lines. ? keep the clock traces on the same layer. whenever pos- sible, avoid placing vias on the clock traces. placement of vias on the traces can affect the trace characteristic impedance and hence degrade signal integrity. ? to prevent cross talk, avoid routing other signal traces in parallel with the clock traces. if running parallel traces is unavoidable, allow a separation of at least three trace widths between the differential clock trace and the other signal trace. ? make sure no other signal traces are routed between the clock trace pair. ? the matching termination resistors should be located as close to the receiver input pins as possible. c rystal the crystal x1 should be located as close as possible to the pins 24 (xtal_out) and 25 (xtal_in). the trace length between the x1 and u1 should be kept to a minimum to avoid unwanted parasitic inductance and capacitance. other signal traces should not be routed near the crystal traces. c14 c16 c15 via pin 1 vcca tl1, tl21n are 50 ohm traces and equal length c11 r4 tl1 tl1n r2 gnd r1 r3 c1 close to the input pins of the receiver r7 vcc u1 tl1 c2 tl1n x1
idt ? / ics ? 3.3v lvpecl frequency synthesizer 14 ics8432byi-51 rev. b may 13, 2008 ics8432i-51 700mhz, crystal-to-3.3v differential lvpecl frequency synthesizer p ower c onsiderations this section provides information on power dissipation and junction temperature for the ics8432i-51. equations and example calculations are also provided. 1. power dissipation. the total power dissipation for the ics8432i-51 is the sum of the core power plus the power dissipated in the load(s). the following is the power dissipation for v cc = 3.3v + 5% = 3.465v, which gives worst case results. note: please refer to section 3 for details on calculating power dissipated in the load. ? power (core) max = v cc_max * i ee_max = 3.465v * 145ma = 502.425mw ? power (outputs) max = 30mw/loaded output pair if all outputs are loaded, the total power is 2 * 30mw = 60mw total power _max (3.465v, with all outputs switching) = 502.425mw + 60mw = 562.425mw 2. junction temperature. junction temperature, tj, is the t emperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. the maximum recommended junction temperature for hiperclocks tm devices is 125c. the equation for tj is as follows: tj = j a * pd_total + t a tj = junction temperature ja = junction-to-ambient thermal resistance pd_total = total device power dissipation (example calculation is in section 1 above) t a = ambient temperature in order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance ja must be used. assuming a moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 42.1c/w per table 10a below. therefore, tj for an ambient temperature of 85c with all outputs switching is: 85c + 0.562w * 42.1c/w = 108.7c. this is well below the limit of 125c. this calculation is only an example. tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow , and the type of board (single layer or multi-layer). ja by velocity (linear feet per minute) 0 200 500 single-layer pcb, jedec standard test boards 67.8c/w 55.9c/w 50.1c/w multi-layer pcb, jedec standard test boards 47.9c/w 42.1c/w 39.4c/w note: most modern pcb designs use multi-layered boards. the data in the second row pertains to most designs. t able 10a. t hermal r esistance ja for 32- pin lqfp, f orced c onvection ja by velocity (linear feet per minute) t able 10b. t hermal r esistance ja for 32- pin vfqfn, f orced c onvection 0 multi-layer pcb, jedec standard test boards 34.8c/w
idt ? / ics ? 3.3v lvpecl frequency synthesizer 15 ics8432byi-51 rev. b may 13, 2008 ics8432i-51 700mhz, crystal-to-3.3v differential lvpecl frequency synthesizer 3. calculations and equations. the purpose of this section is to derive the power dissipated into the load. lvpecl output driver circuit and termination are shown in figure 8. t o calculate worst case power dissipation into the load, use the following equations which assume a 50 load, and a termination voltage of v cco ? 2v. ? for logic high, v out = v oh_max = v cco_max ? 0.9v (v cco_max ? v oh_max ) = 0.9v ? for logic low, v out = v ol_max = v cco_max ? 1.7v (v cco_max ? v ol_max ) = 1.7v pd_h is power dissipation when the output drives high. pd_l is the power dissipation when the output drives low. pd_h = [(v oh_max ? (v cco_max ? 2v))/r l ] * (v cco_max ? v oh_max ) = [(2v ? (v cco_max ? v oh_max )) /r l ] * (v cco_max ? v oh_max ) = [(2v - 0.9v)/50 ) * 0.9v = 19.8mw pd_l = [(v ol_max ? (v cco_max ? 2v))/r l ] * (v cco_max ? v ol_max ) = [(2v ? (v cco_max ? v ol_max )) /r l ] * (v cco_max ? v ol_max ) = [(2v ? 1.7v)/50 ) * 1.7v = 10.2mw total power dissipation per output pair = pd_h + pd_l = 30mw f igure 8. lvpecl d river c ircuit and t ermination q1 v out v cco rl 50 v cco - 2v
idt ? / ics ? 3.3v lvpecl frequency synthesizer 16 ics8432byi-51 rev. b may 13, 2008 ics8432i-51 700mhz, crystal-to-3.3v differential lvpecl frequency synthesizer r eliability i nformation t ransistor c ount the transistor count for ics8432i-51 is: 3743 t able 11a. ja vs . a ir f low t able for 32 l ead lqfp t able 11b. ja vs . a ir f low t able for 32 l ead vfqfn p ackage ja by velocity (linear feet per minute) 0 200 500 single-layer pcb, jedec standard test boards 67.8c/w 55.9c/w 50.1c/w multi-layer pcb, jedec standard test boards 47.9c/w 42.1c/w 39.4c/w note: most modern pcb designs use multi-layered boards. the data in the second row pertains to most designs. ja by velocity (linear feet per minute) 0 multi-layer pcb, jedec standard test boards 34.8c/w
idt ? / ics ? 3.3v lvpecl frequency synthesizer 17 ics8432byi-51 rev. b may 13, 2008 ics8432i-51 700mhz, crystal-to-3.3v differential lvpecl frequency synthesizer p ackage o utline - y s uffix for 32 l ead lqfp t able 12a. p ackage d imensions reference document: jedec publication 95, ms-026 n o i t a i r a v c e d e j s r e t e m i l l i m n i s n o i s n e m i d l l a l o b m y s a b b m u m i n i ml a n i m o nm u m i x a m n 2 3 a - -- -0 6 . 1 1 a 5 0 . 0- -5 1 . 0 2 a 5 3 . 10 4 . 15 4 . 1 b 0 3 . 07 3 . 05 4 . 0 c 9 0 . 0- -0 2 . 0 d c i s a b 0 0 . 9 1 d c i s a b 0 0 . 7 2 d . f e r 0 6 . 5 e c i s a b 0 0 . 9 1 e c i s a b 0 0 . 7 2 e . f e r 0 6 . 5 e c i s a b 0 8 . 0 l 5 4 . 00 6 . 05 7 . 0 0 - - 7 c c c - -- -0 1 . 0
idt ? / ics ? 3.3v lvpecl frequency synthesizer 18 ics8432byi-51 rev. b may 13, 2008 ics8432i-51 700mhz, crystal-to-3.3v differential lvpecl frequency synthesizer p ackage o utline - k s uffix 32 l ead vfqfn t able 12b. p ackage d imensions reference document: jedec publication 95, mo-220 n o i t a i r a v c e d e j s r e t e m i l l i m n i s n o i s n e m i d l l a l o b m y sm u m i n i mm u m i x a m n 2 3 a 0 8 . 00 . 1 1 a 05 0 . 0 3 a e c n e r e f e r 5 2 . 0 b 8 1 . 00 3 . 0 e c i s a b 0 5 . 0 n d 8 n e 8 d 0 . 5 2 d 5 2 . 15 2 . 3 e 0 . 5 2 e 5 2 . 15 2 . 3 l 0 3 . 00 5 . 0 to p view index area d cham fer 4x 0.6 x 0.6 max optional anvil singula tion a 0. 0 8 c c a3 a1 s eating plan e e2 e2 2 l (n -1)x e (r ef.) (ref. ) n & n even n e d2 2 d2 (ref.) n & n odd 1 2 e 2 (ty p.) if n & n are even (n -1)x e (re f.) b th er mal ba se n or note: the following package mechanical drawing is a generic drawing that applies to any pin count vfqfn package. this draw- ing is not intended to convey the actual pin count or pin layout of this device. the pin count and pinout are shown on the front page. the package dimensions are in table 12b below.
idt ? / ics ? 3.3v lvpecl frequency synthesizer 19 ics8432byi-51 rev. b may 13, 2008 ics8432i-51 700mhz, crystal-to-3.3v differential lvpecl frequency synthesizer while the information presented herein has been checked for both accuracy and reliability, integrated device technology, incorp orated (idt) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. no other circuits, patents, or l icenses are implied. this product is intended for use in normal commercial and industrial applications. any other applications such as those requiring high reliability or other extraordinary environmental r equirements are not recommended without additional processing by idt. idt reserves the right to change any circuitry or specifications without notice. idt does not authorize or warrant any idt product for use in life support devices or critical medical instruments. t able 13. o rdering i nformation r e b m u n r e d r o / t r a pg n i k r a me g a k c a pg n i g a k c a p g n i p p i h se r u t a r e p m e t 1 5 - i y b 2 3 4 8 s c i1 5 - i y b 2 3 4 8 s c ip f q l d a e l 2 3y a r tc 5 8 o t c 0 4 - t 1 5 - i y b 2 3 4 8 s c i1 5 - i y b 2 3 4 8 s c ip f q l d a e l 2 3l e e r & e p a t 0 0 0 1c 5 8 o t c 0 4 - f l 1 5 - i y b 2 3 4 8 s c il 1 5 - i b 2 3 4 8 s c ip f q l " e e r f - d a e l " d a e l 2 3y a r tc 5 8 o t c 0 4 - t f l 1 5 - i y b 2 3 4 8 s c il 1 5 - i b 2 3 4 8 s c ip f q l " e e r f - d a e l " d a e l 2 3l e e r & e p a t 0 0 0 1c 5 8 o t c 0 4 - 1 5 - i k b 2 3 4 8 s c i1 5 i b 2 3 4 8 s c in f q f v d a e l 2 3y a r tc 5 8 o t c 0 4 - t 1 5 - i k b 2 3 4 8 s c i1 5 i b 2 3 4 8 s c in f q f v d a e l 2 3l e e r & e p a t 0 0 5 2c 5 8 o t c 0 4 - f l 1 5 - i k b 2 3 4 8 s c il 1 5 i b 2 3 4 s c in f q f v " e e r f - d a e l " d a e l 2 3y a r tc 5 8 o t c 0 4 - t f l 1 5 - i k b 2 3 4 8 s c il 1 5 i b 2 3 4 s c in f q f v " e e r f - d a e l " d a e l 2 3l e e r & e p a t 0 0 5 2c 5 8 o t c 0 4 - . t n a i l p m o c s h o r e r a d n a n o i t a r u g i f n o c e e r f - b p e h t e r a r e b m u n t r a p e h t o t x i f f u s " f l " n a h t i w d e r e d r o e r a t a h t s t r a p : e t o n
idt ? / ics ? 3.3v lvpecl frequency synthesizer 20 ics8432byi-51 rev. b may 13, 2008 ics8432i-51 700mhz, crystal-to-3.3v differential lvpecl frequency synthesizer t e e h s y r o t s i h n o i s i v e r v e re l b a te g a pe g n a h c f o n o i t p i r c s e de t a d b 1 . n i _ l a t x o t t u o _ l a t x m o r f 5 2 n i p n o o p y t d e t c e r r o c - t n e m n g i s s a n i p 8 0 / 3 1 / 5
ics8432i-51 700mhz, crystal-to-3.3v differential lvpecl frequency synthesizer innovate with idt and accelerate your future networks. contact: www.idt.com for sales 800-345-7015 (inside usa) +408-284-8200 (outside usa) fax: 408-284-2775 www.idt.com/go/contactidt for tech support netcom@idt.com +480-763-2056 corporate headquarters integrated device technology, inc. 6024 silver creek valley road san jose, ca 95138 united states 800-345-7015 (inside usa) +408-284-8200 (outside usa) ? 2008 integrated device technology, inc. all rights reserved. product spe cifications subject to change without notice. idt, th e idt logo, ics and hiperclocks are trademarks of integrated device technology, inc. accelerated thinking is a service mark of integrated device technology, inc. all other br ands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. printed in usa


▲Up To Search▲   

 
Price & Availability of 8432BYI-51LF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X